Environment Setup Guide¶
Before starting quantitative trading, you need a clean, stable, and isolated Python environment. This guide provides two mainstream solutions: Miniconda (Classic & Stable) and uv (Fast & Modern).
Option A: Miniconda (Classic)¶
Miniconda is a minimal installer for conda. It is the industry standard for data science, making it easy to manage Python versions and dependencies.
1. Install Miniconda¶
Tip: Users in China can download from Tsinghua Mirror for faster speeds.
- Visit Miniconda Website (or Tsinghua Mirror).
- Download the Windows 64-bit installer (
.exe). - Run the installer. It is recommended to check "Add Miniconda3 to my PATH environment variable" (convenient for beginners).
- After installation, open Command Prompt (CMD) or PowerShell.
Method A: Via Homebrew (Recommended) Open Terminal and run:
Method B: Via Installer Script
1. Download script for Apple Silicon or Intel.
2. Run in terminal: bash Miniconda3-latest-MacOSX-arm64.sh.
1.5 Configure Mirrors (For Users in China)¶
If you are located in China, download speeds might be slow. It is recommended to use the Tsinghua University mirror.
# Configure Conda Mirror
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
# Configure Pip Mirror
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
2. Create Virtual Environment¶
Do not install libraries directly into your system Python! We need a dedicated "sandbox".
Open your terminal (or CMD/Anaconda Prompt on Windows) and type:
# Create an environment named 'akquant' with Python 3.10
conda create -n akquant python=3.10 -y
# Activate the environment
conda activate akquant
Once activated, your command prompt prefix will change to (akquant), indicating you are inside the sandbox.
Option B: uv (Fast & Modern)¶
If you want extreme speed and lightweight management, uv is the fastest package manager in the Python ecosystem (written in Rust). It replaces pip and virtualenv.
1. Install uv¶
2. Create & Manage Environment¶
uv does not require pre-installed Python; it manages Python versions for you.
# 1. Create a project directory
mkdir my_strategy
cd my_strategy
# 2. Initialize virtual env (Specify Python 3.10)
# uv will automatically download Python 3.10 and create .venv folder
uv venv --python 3.10
# 3. Activate environment
# Windows:
.venv\Scripts\activate
# macOS / Linux:
source .venv/bin/activate
3. Install AKQuant & Verify¶
Whether you used Miniconda or uv, you should now be in an activated virtual environment.
Install¶
If using Miniconda:
pip install akquant
# Users in China can use the Tsinghua mirror for speed:
# pip install akquant -i https://pypi.tuna.tsinghua.edu.cn/simple
If using uv:
uv pip install akquant
# Users in China:
# uv pip install akquant --index-url https://pypi.tuna.tsinghua.edu.cn/simple
Verify¶
Create a test script verify.py:
import akquant
import pandas as pd
print(f"AKQuant Version: {akquant.__version__}")
print(f"Pandas Version: {pd.__version__}")
print("Environment setup successful! Ready to trade.")
Run it:
If you see the success message, your arsenal is ready! Next, go to Python for Finance to learn syntax, or jump to Quant Guide to start coding strategies.